
Implementation  
Guide

EKG Platform

Platform setup and performance tuning.  
Setting up data processing rules

Summary

1. Deploy the platform 2

1.1.	Architecture overview 2

1.2.	Install PostgreSQL and set up databases 6

1.3.	Install Apache Fuseki and initialize dataset 8

1.4.	Set up KeyCloak 9

1.5.	Deploy DataVera applications as Kubernetes pods 10

1.6.	Set up endpoint, data storages and access rights 13

2.	Compose the data model 24

2.1.	Classes 24

2.2.	Properties 27

3.	Create mapping rules and connect data sources	 33

3.1.	Data sources 33

3.2.	Class and property maps. OpenMetadata 37

integration

3.3.	Object maps (enumerations) 42

3.4.	Complex mapping rules 44

4.	Define normalization rules 49

5.	Set up validation rules and assess data quality	 54

5.1.	Constraints representation in the ontology 54

5.2.	Create constraints 57

5.3.	Visualize violations and monitor data quality 65

5.4.	Use control ratios in constraints 71

6.	Create consolidation rules 74

6.1.	Duplicates search and markup 74

6.2.	Consolidation rules 76

7.	Build the reference data set and check data 78

provenance

8.	Set up and monitor continuous data update 85

9.	Consume reference data 88

10.	Performance tuning tips 90

1. Deploy the platform
1.1. Architecture overview

DataVera EKG Platform is a sophisticated enterprise software

solution optimized for high-load environments. Its

architecture for on-premise installation includes several

components. The principal deployment schema is shown in

the . The components distribution by the virtual

machines and the minimum hardware requirements are

listed in the

 Kubernetes/OpenShift cluster nodes are used to deploy

the DataVera application components:

Fig. 1

Table 1

– DataVera EKG Provider – the data access middleware,

a core system component.

– DataVera EKG Explorer – the web-based user interface.

– Incoming (ekg-worker) and outgoing data exchange

adapters.

 Apache Fuseki – the RDF triple store used by the platform

to keep the data model.

 PostgreSQL – the database cluster used by the platform

to store the data

 etcd+haproxy – the configuration storage and load

balancer for PostgreSQL cluster

 Keyсloak – the authorization and authentication provider

 Kafka – the message broker used for data exchange

between the platform components and with the external

data suppliers or consumers

 Elasticsearch and Kibana – logs storage and components

monitoring.

Looks complex, right? But we are sure that the proposed

architecture is highly adaptive, scalable and functional for

the real-world data processing tasks.

2

1. Deploy the platform / 1.1. Architecture overview

Fig. 1. DataVera EKG Platform deployment diagram

3

1. Deploy the platform / 1.1. Architecture overview

In this guide we describe how to set up platform environment step by step, referring to separate technical instructions

for some steps to avoid excessive details.

Table 1. DataVera EKG Platform on-premise deployment: the list of the components and virtual machines,

with minimal hardware requirements.

Server role vCPUs RAM, Gb SSD, Gb Quantity

1 Kubernetes/OpenShift cluster, master node 4 4 50 1

2 Kubernetes/OpenShift cluster, worker node 8 16 100 2

3 GitLab server 4 8 100 1

4 Elasticsearch/Kibana 4 8 100 1

5 Apache Fuseki RDF triple store (replica 1) 4 4 50 1

6 Apache Fuseki RDF triple store (replica 2) 4 4 50 1

7 PostgreSQL (master) 8 32 500 1

8 Apache Fuseki RDF triple store (replica 1) 4 4 50 1

4

1. Deploy the platform / 1.1. Architecture overview

Server role vCPUs RAM, Gb SSD, Gb Amount

9 Apache Fuseki RDF triple store (replica 2) 4 4 50 1

10 PostgreSQL (master) 8 32 500 1

11 PostgreSQL (read only replica) 8 32 500 1

12 PostgreSQL (read only replica) 8 32 500 1

13 PostgreSQL (standby) 8 32 500 1

14 PostgreSQL (replica) 8 32 500 1

15 etcd+haproxy (node 1) 2 4 20 1

16 etcd+haproxy (node 2) 2 4 20 1

17 etcd+haproxy (node 3) 2 4 20 1

Total 66 184 2510 14

5

6

1. Deploy the platform / 1.2. Install Postgres and set up databases

To install the software, you need to prepare all the above-

listed servers and allocate resources in the Kubernetes/

OpenShift cluster. To improve platform performance, we

recommend using drives and network storage with minimal

access rates (Low Latency) and maximum I/O performance

(High IOPS), based on NVMe or SSD. After installing the

operating system, it is recommended to install all the

released updates and security patches, following the  

OS vendor's instructions. On all servers, you need to install

and configure time synchronization software via the NTP

protocol in accordance with the OS vendor's instructions.

Then install GitLab and import the projects provided by

DataVera in the installation package (see the

), or use the HELM charts. These projects contain

configuration files and scenarios used in the further

installation steps.

 GitLab set-up

instruction

1.2. Install PostgreSQL and set up databases

We recommend clustered Postgres deployment using

Partoni. However, for the demonstration purposes or in the

low load projects the standalone Postgres can be used.

Deploy the PostgreSQL cluster using the Ansible playbook

provided by DataVera, following the .

As a result of this step, you should obtain a working

PostgreSQL cluster (see).

detailed instructions

Fig. 2

A multi-threaded connection pooler pgcat is used to

distribute SQL queries across cluster replicas and split read

and write queries. The pooler runs as a container in a

Kubernetes/OpenShift cluster. See the separate

on how to deploy pgcat using GitLab CI/CD pipeline.

instruction

7

1. Deploy the platform / 1.2. Install Postgres and set up databases

Fig. 2. Ansible playbook output demonstrating the successful PostgreSQL cluster deployment

After that, you need to import the initial database dumps

provided in the dumps folder of the datavera-ekg/

postgresql_cluster GitLab project.

This can be done from the console of any VM with the

postgresql client installed and the network access to the

PostgreSQL cluster, for example from any cluster node.

8

1. Deploy the platform / 1.3. Install Apache Fuseki and initialize dataset

Copy the dump files ekg_config_prod.psql.gz and

ekg_data_prod.psql.gz, unzip them and load into the

database using the following shell commands:

You can use any PostgreSQL client application to connect to

these databases, for example DBeaver.

psql -h [master IP] -p 5000 -U ekg -d ekg_config < ekg_config_prod.psql 

psql -h [master IP] -U ekg -d ekg_data_prod < ekg_data_prod.psql

1.3. Install Apache Fuseki and initialize dataset

Apache Jena Fuseki is an open-source RDF triple store

which DataVera EKG Platform uses as a data model storage.

It is deployed using datavera-ekg/update-artefacts GitLab

project. The image update CI/CD pipeline includes update-

image job that fetches images from the vendor repository

and uploads them to the customer’s repository. You should

run this job before starting deployment.

The Fuseki server is deployed as a Docker container on two

hosts that duplicate each other. To distribute requests

between the hosts, a NGINX traffic balancer shall be

deployed in Kubernetes/OpenShift. It is an entry point for

applications reading from Fuseki. Fuseki write operations are

performed by the platform on both servers directly and

simultaneously. Please follow the

 to deploy it on the appropriate virtual servers.

After the deployment is done, you shall load the initial

dataset from the file "dataset.nq.gz" in the datavera-ekg/

fuseki GitLab project into both Fuseki instances, using the

"Add data" button in its user interface.

Fuseki deployment

instruction

9

1. Deploy the platform / 1.3. Install Apache Fuseki and initialize dataset / 1.4. Set up Keycloak

1.4. Set up Keycloak

Keycloak is an open-source authorization and authentication

provider used by DataVera EKG Platform. It can be federated

with Active Directory domains or used as a Kerberos

authentication provider.

The YAML manifests and configuration files for Keycloak are

located in the datavera-ekg/keycloak GitLab project.

Keycloak runs in Kubernetes. It stores configuration in

PostgreSQL. Please refer to the

 to go through the setup steps.

Keycloak deployment

instruction

When Keycloak is up, log into its interface. Open the "master"

realm management page. Open the datavera-ekg/keycloak

project in GitLab and save the eub-prod/realm-export.json

file to the workstation where the Keycloak web interface is

available.

Go to the http://[keycloak address]/auth/admin/master/

console/#/realms/master/partial-import page, choose the

"If a resource exists = Skip" option, and import the saved file.

Keyсloak deployment is complete. Now you can create user

groups and accounts.

10

1. Deploy the platform / 1.5. Deploy DataVera applications as Kubernetes pods

1.5. Deploy DataVera applications as Kubernetes pods

The contains the

core YAML manifests and configuration files for application

deployment. The EKG Provider stores its configuration in the 

ekg_config PostgreSQL database. The access credentials for

this database, as well as some other default settings, are

defined in the config.json file, which you can edit in GitLab:

datavera-ekg/ekg-provider GitLab project

{"postgres":"user=ekg password=<db_password> dbname=ekg_config host=pgcat-primary port=6432

target_session_attrs=read-write","ekg_host":"127.0.0.1","ekg_port":"80","ekg_url":"/

rest/","ekg_client":"ekg","internal_broker":"Postgres","broker_queue":"EKG_SYNC","broker_host

":"<broker

host>","broker_port":"9092","broker_user":"ekg","broker_password":"<broker_password>"}

The description of the parameters and their default values

are listed on the next page.

11

1. Deploy the platform / 1.5. Deploy DataVera applications as Kubernetes pods

Table 2. DataVera EKG Provider core configuration parameters

Parameter Default value Descriprion

postgres PostgreSQL connection string

ekg-host 127.0.0.1 EKG Provider host

ekg-port 80 EKG Provider port

ekg_url /rest/ EKG Provider URL

ekg_client ekg EKG Provider client ID

internal_broker Postgres Internal broker used by EKG Provider, may be either PostgreSQL or Kafka

broker_queue EKG_SYNC Internal broker topic name

broker_host External broker used by EKG Provider to exchange data with the data

sources or consumers, host

broker_port External broker port

broker_user External broker port login

broker_password External broker port password

12

1. Deploy the platform / 1.5. Deploy DataVera applications as Kubernetes pods

When the config.json is ready, you have to run the "update-

image" and "deploy" tasks in the GitLab project, as shown in

.Fig. 3

Run these jobs for all the DataVera applications: ekg-

provider, ekg-explorer and ekg-worker. If the pods start

successfully, the deployment is done. Now you have to

configure the data storages and access rights.

Fig. 3. CI/CD tasks for the ekg-provider application deployment

13

1. Deploy the platform / 1.6. Set up endpoint, data storages and access rights

1.6. Set up endpoint, data storages and access rights

The remaining platform configuration steps are performed

using the "ekg-provider" shell command. You shall log into

Kubernetes/OpenShift cluster, and get the ekg-provider pod

identifier by running the “kubectl get pods” command. Then

you can run configuration commands prepending them with

"kubectl exec" (or "oc exec", if using OpenShift). For example,

run the following command to list the available endpoints:

kubectl exec [pod id] -c main ./ekg-provider show endpoints

We will further omit the left part of the commands.

Our first task is to create an endpoint. Endpoint can be

viewed as a separate dataset, or a logical database. Each

endpoint has its own data model, rules and access rights.

To create a new endpoint or change the properties of an

existing one, run the following command:

ekg-provider add | change endpoint [readable name] [API code] [ontology prefix] [default

storage]

14

1. Deploy the platform / 1.6. Set up endpoint, data storages and access rights

Each endpoint shall have at least one assigned storage –

a database which will store its data. The first storage of each

endpoint must be a Fuseki dataset: it will be used to keep  

store the model and rules. The other storages may be

PostgreSQL tables intended to keep store the data objects

(individuals) of the model classes. 

The storages management command has the following

syntax:

ekg-provider add | change storage [name] [endpoint name or code] fuseki | postgresql [host]

[port] [dbname or _ for Fuseki] [table or dataset for Fuseki] [login] [password] [history

(0/1)] [logic (0/1)] [query_path for Fuseki] [update_path for Fuseki]

Since an endpoint contains a reference to the default

storage, and each storage is bound to an endpoint, you shall

perform the following steps:

 Create an endpoint without specifying a value for the

default storage parameter:

ekg-provider add endpoint Demo demo

http://yourdomain.com/prefix/

15

1. Deploy the platform / 1.6. Set up endpoint, data storages and access rights

 Create a Fuseki storage for this endpoint. We have

initialized a Fuseki dataset previously, now we have to

register it in the platform configuration database:

ekg-provider add storage Fuseki_Demo

demo fuseki 127.0.0.1 8080 _ demo

admin [Fuseki password] 1 1 /fuseki4/

demo /fuseki4/demo/update

 Run the change endpoint command, specifying the name

of the created storage as the default storage

ekg-provider change endpoint Demo demo

http://yourdomain.com/prefix/

Fuseki_Demo

After running these commands, you can restart the ekg-

provider application using GitLab CI/CD "deploy" task, log

into the EKG Explorer web interface and see your first

working endpoint. But as this endpoint will have only one

Fuseki storage, it will save all the data objects in it, which is

rather slow. Therefore, it would be better to create a

PostgreSQL storage right from the start, and map our model

classes to it. At this moment, we need to come up with our

ontology structure (we can consider it as a data model, in  

some approximation). Let us decide now that all the classes

we create shall be the subclasses of an http://www.w3.org/

ns/prov#Entity (prov:Entity) class. This class generally  

describes all the entities that may have associated

provenance information, and all our domain ontology objects

shall have it. Now we proceed without discussion, and return

to it later. Let us create a PostgreSQL storage and map our

class to it.

16

1. Deploy the platform / 1.6. Set up endpoint, data storages and access rights

 Connect to our PostgreSQL server. Create the database

"postgres_demo". Create the first table having the

following structure:

CREATE TABLE public.entity ( 

 uri varchar NULL, 

	 "type" varchar NULL, 

	 "name" varchar NULL, 

	 "data" jsonb NULL, 

	 "sameas" varchar NULL, 

	 CONSTRAINT entity_un UNIQUE (uri) 

);

CREATE UNIQUE INDEX entity_idx ON

public.entity USING btree (uri);

CREATE INDEX data_idx ON public.entity

USING gin (data);

CREATE INDEX sameas_idx ON

public.entity USING gin (sameas);

 Create a PostgreSQL storage in the EKG Provider

configuration:

ekg-provider add storage PG_Entity

demo postgresql 127.0.0.1 5432

postgres_demo entity ekg [Postgres ekg

password] 1 1

 Assign the http://www.w3.org/ns/prov#Entity class (it

will be the root of our ontology) to this storage using the

command:

ekg-provider bind demo PG_Entity

http://www.w3.org/ns/prov#Entity

17

1. Deploy the platform / 1.6. Set up endpoint, data storages and access rights

 Set up standard columns mapping for this storage:

ekg-provider map PG_Entity uri uri 0

ekg-provider map PG_Entity data data 0

ekg-provider map PG_Entity name

http://www.w3.org/2000/01/rdf-

schema#label 0

ekg-provider map PG_Entity type

http://www.w3.org/1999/02/22-rdf-

syntax-ns#type 1

ekg-provider map PG_Entity sameas

http://www.w3.org/2002/07/owl#sameAs 1

These commands define the correspondence between the

individuals of the http://www.w3.org/ns/prov#Entity class

and the table columns. You can create additional columns,

index them and map them to the ontology properties to

improve SELECT queries performance. The properties that  

are rarely used in the queries should not be mapped to the

separate columns, and by default their values will be stored

in the jsonb column named "data". The four columns: uri,

type, name and data are mandatory for all PostgreSQL

storage tables, except of some very special cases. You can

see the detailed explanation of the mentioned commands

syntax in our .

There are three special classes in the platform metamodel:

the “Consolidation errors” class stores the information about

consolidation errors occurred during the reference data

assembly, the “Validation result” class keeps the constraint

violations, and the “Derivation” class stores data provenance

information for the reference objects. All these classes shall

be mapped to PostgreSQL tables to use the full platform

functionality, especially for bulk validation and consolidation

operations.

User Guide

https://datavera.org/files/EKG-Provider-User-Guide-EN.pdf

18

1. Deploy the platform / 1.6. Set up endpoint, data storages and access rights

 Below, we list the commands for setting up the standard mapping for these classes.

ekg-provider add storage PG_Validation demo postgresql 127.0.0.1 5432 postgres_demo \ 

validation ekg [Postgres ekg password] 1 1

ekg-provider bind demo PG_Validation http://www.w3.org/ns/shacl#ValidationResult

ekg-provider map PG_Validation uri uri 0

ekg-provider map PG_Validation data data 0

ekg-provider map PG_Validation name http://www.w3.org/2000/01/rdf-schema#label 0

ekg-provider map PG_Validation type http://www.w3.org/1999/02/22-rdf-syntax-ns#type 1

ekg-provider map PG_Validation focus_node \

http://www.w3.org/ns/shacl#focusNode

ekg-provider add storage PG_Consolidation demo postgresql 127.0.0.1 5432 postgres_demo \

consolidation ekg [Postgres ekg password] 1 1

ekg-provider bind demo PG_Consolidation http://datavera.kz/ekg/ConsolidationError

ekg-provider map PG_Consolidation uri uri 0

19

1. Deploy the platform / 1.6. Set up endpoint, data storages and access rights

ekg-provider map PG_Consolidation data data 0

ekg-provider map PG_Consolidation name http://www.w3.org/2000/01/rdf-schema#label 0

ekg-provider map PG_Consolidation type http://www.w3.org/1999/02/22-rdf-syntax-ns#type 1

ekg-provider map PG_Consolidation data_source_object \

http://datavera.kz/ekg/hasDataSourceObject 1

ekg-provider add storage PG_Provenance demo postgresql 127.0.0.1 5432 postgres_demo \

provenance ekg [Postgres ekg password] 1 1

ekg-provider bind demo PG_Provenance http://www.w3.org/ns/prov#Derivation

ekg-provider map PG_Provenance uri uri 0

ekg-provider map PG_Provenance data data 0

ekg-provider map PG_Provenance name http://www.w3.org/2000/01/rdf-schema#label 0

ekg-provider map PG_Provenance type http://www.w3.org/1999/02/22-rdf-syntax-ns#type 1

20

1. Deploy the platform / 1.6. Set up endpoint, data storages and access rights

You shall also create PostgreSQL tables to store the individuals of these classes:

CREATE TABLE public.violation ( 

 uri varchar NULL, 

 "type" varchar NULL, 

 "name" varchar NULL, 

 "data" jsonb NULL, 

 "focus_node" varchar NULL, 

 CONSTRAINT violation_un UNIQUE (uri) 

);

CREATE UNIQUE INDEX violation_uri_idx ON public.violation USING btree (uri);

CREATE INDEX violation_data_idx ON public.violation USING gin (data);

CREATE INDEX violation_focus_node_idx ON public.violation USING btree (focus_node);

CREATE TABLE public.consolidation ( 

 uri varchar NULL, 

 "type" varchar NULL, 

 "name" varchar NULL, 

 "data" jsonb NULL, 

 "data_source_object" _varchar NULL,

21

1. Deploy the platform / 1.6. Set up endpoint, data storages and access rights

 CONSTRAINT consolidation_un UNIQUE (uri) 

);

CREATE UNIQUE INDEX consolidation_uri_idx ON public.consolidation USING btree (uri);

CREATE INDEX consolidation_data_idx ON public.consolidation USING gin (data);

CREATE INDEX consolidation_data_source_object_idx ON public.consolidation USING gin

(data_source_object);

CREATE TABLE public.provenance ( 

 uri varchar NULL, 

 "type" varchar NULL, 

 "name" varchar NULL, 

 "data" jsonb NULL, 

 CONSTRAINT prov_un UNIQUE (uri) 

);

CREATE UNIQUE INDEX provenance_uri_idx ON public.provenance USING btree (uri);

CREATE INDEX prov_provenance_idx ON public.provenance USING gin (data);

22

1. Deploy the platform / 1.6. Set up endpoint, data storages and access rights

The only remaining task is to set up EKG Platform clients,

map them to the Keycloak user groups, and define access

rights.

 First, let us create a platform client named "Managers"

with the code "managers" for endpoint Demo:

ekg-provider add client Managers

managers Demo

 Grant managers read and write rights to the http://

www.w3.org/ns/prov#Entity class:

ekg-provider grant Demo Managers

http://www.w3.org/ns/prov#Entity 1 1

Please note that it means that Managers will not have

access to the other model classes unless we will explicitly

grant it. We have to grant them read-only access to the

SHACL classes container to make them able to interact

with the platform’s Data Quality, Mapping rules and Data

provenance features (we will discuss it later in details):

ekg-provider grant Demo Managers

http://datavera.kz/ekg/shaclContainer 1 1

ekg-provider grant Demo Managers

http://datavera.kz/ekg/

MappingRulesElements 1 1

ekg-provider grant Demo Managers

http://datavera.kz/ekg/provRoot 1

 Now open the Keycloak realm management console and

create the Managers group. In order to map it to the

"Managers" platform client, you need to create an

attribute named “providerId” having the following JSON

value (see): Fig. 4

{"clientId": "managers", "priority": 0

23

1. Deploy the platform / 1.6. Set up endpoint, data storages and access rights

Fig. 4. Creating a Keycloak group attribute to map it with the EKG Provider client

Congratulations, we have completed the initial EKG Platform

setup! Now you can restart the ekg-provider pod and log into

the EKG Explorer web interface using an account from the

"Managers" group. You shall see the tree of the default model

classes to which you have granted access. It’s time for us to

start designing the data model.

24

2. Compose the Data Model
2.1. Classes

EKG Platform uses the RDFS/OWL ontologies to represent

the data model. Don’t worry; you won’t need to dig into the

nuances of logic and philosophical concepts to work with it.

If you want to know a little more about the technical details

of ontology modeling – for example, why URIs are used as

the object identifiers – refer to the books covering this topic.

Some information to start is also provided in our

.

Let us also note that EKG Platform does not fully implement

all the features of the RDFS/OWL specifications and does not

pretend to be the ontology management software. It is a

 focused on processing the large

data sets – the task which many of the ontology

management platforms struggle with. It uses ontologies to

simplify the data model and data processing rules

management, and the main customer’s benefit is the high

speed of new data processing requirements implementation.

EKG Platform User Guide

data management platform

A rather simple open-source tool, Protégé, will help us create

a sample model and load it into the platform. Download and

run its desktop version. Change the ontology prefix to yours:

we use http://yourdomain.com/prefix/ as an example, as

mentioned above when creating endpoint. You can define

another prefix, for example, using URL of your organization’s

website.

In the same Protégé window, open the Ontology Prefixes tab

below. Edit the default prefix “:” and change it to http://

yourdomain.com/prefix/

Switch to the Entities tab. You will see the Classes sub-tab

with the only superclass, owl:Thing. It is a root of an

ontology. The classes in ontologies define the entity (or data

object) types, such as the Customers, Products etc. You may

compare them with the tables in a relational database, with

one significant difference: classes may contain subclasses.

https://datavera.org/files/EKG-Provider-User-Guide-EN.pdf

25

2. Compose the Data Model / 2.1. Classes

Fig. 5. Ontology prefix in Protégé

A subclass is a subset of some class. For example, our

company works with the counterparties (Agents), which can

be Persons or Organizations. The latter two are the

subclasses of the former. This means that in our model, every

Person is an Agent, and every Organization is an Agent, but

not vice versa: not every Agent is a Person or Organization.

Let us create the superclass http://www.w3.org/ns/

prov#Entity, its subclass Agent, and its subclasses Person

and Organization. The result should look as shown in .Fig. 6

26

2. Compose the Data Model / 2.1. Classes

Fig. 6. Sample classes tree

We need to give readable names to the elements of our

ontology. Select a class in the tree, click "+" button in the

Annotations tab on the right, and add the rdfs:label value.

You can define several labels for each ontology element in

multiple languages.

At this moment let us mention that there exist a lot of

widespread and well-known ontologies. To do the serious

ontology engineering, you shall learn the upper-level and

domain-level ontologies applicable to your business area. In

our example, let us take some classes from the well-known

FOAF (friend-of-a-friend) ontology. Let us refactor our model

by importing the Agent branch from the FOAF ontology.

Another data objects classification basis is technological.

DataVera EKG Platform works in the following way:

it transfers data from the data sources into its storage,

applies all kinds of rules (we will set them up later), and forms

the reference objects (etalon). So we have to distinguish the

objects acquired from data sources and the reference

objects generated by the EKG. Let’s create “Data source

object” and “Reference object” subclasses for each of the

lower-level classes. Let us also add the “Broker” subclass.

We need also the Product class to represent our company’s

products, and the Reference data class to store

enumerations like Gender and Countries. After creating

them, the classes taxonomy tree shall looks as shown in . Fig. 7

27

2. Compose the Data Model / 2.2. Properties

Fig. 7. Sample ontology classes tree

2.2. Properties

Now let’s turn to the properties. Unlike relational databases,

we can create properties applicable to several classes at

once. Each property has a domain, which can be a

combination of classes whose individuals can possess this

property values. Each property also has a range, which

defines the kind of values this property can have. Generally,

there are two main kinds of properties: Data properties have

literal values (strings, numbers, dates, etc.), while Object

properties point to the objects of the other classes. Let us

create several properties according to the .Table 3

28

2. Compose the Data Model / 2.2. Properties

Table 3. The properties of the sample model

Property Kind Domain Range

Tax ID Data property Person or Broker xsd:string

VAT number Data property Organization xsd:string

Phone Data property foaf:Agent xsd:string

Birth date Data property Person or Broker xsd:string

Gender Object property Person or Broker Gender

Product of interest Object property foaf:Agent Product

Country Object property foaf:Agent Country

As you can see, properties may be assigned to the upper

class, such as foaf:Agent. In this case, individuals of all its

subclasses will be able to possess this property value. It may

be assigned to a combination of classes, such as the “Tax ID”

property assigned to the Person or Broker classes, but not to

the Organization class. Or it can be assigned to a particular

subclass. Similarly, the object property range can be a

combination of several classes, or a single class of any level.

This demonstrates the flexibility of ontologies. A Person can

have Birth date and Gender properties, while an Organization

can’t. Organizations have a VAT number which the Persons

29

2. Compose the Data Model / 2.2. Properties

does not have. Keep in mind that any individual, by default,

can have several values for the same property. For example,

an Agent can have several products of interest.

You can limit the number of possible property values using

the maxCardinality and minCardinality restrictions.

If maxCardinality is set to 1, it means that a property can

have only one value. If minCardinality is set to 1, it means

Fig. 8. Min cardinality restriction creator

that the property must have at least one value for any object

which can possess it.

Creating restrictions may seem a bit messy. To specify the

cardinality restriction, you shall make the class that is this

property’s domain a subclass of a special restriction class.

For example, let us make the taxId property mandatory

(see).

To do this, select the Person class in the classes tree, then

click “+” button in the “SubClass Of” section. Open “Data

restriction creator” tab, choose taxId in the Restricted

property list, and set minCardinality = 1 in the input below.

After the restriction is created, it shold look as shown in

Fig. 9.

Fig. 8

30

2. Compose the Data Model / 2.2. Properties

Fig. 9. The cardinality restriction in the class properties

For Object properties, we need to create reference data

classes to enumerate their possible values. Let us create the

Product class to keep kinds of our products, and the

Reference data class with the Gender and Country

subclasses. We shall create these class individuals right here

in Protégé, using the Individuals by class tab – or you can do

it later in the EKG Explorer interface.

Let us create all the properties listed in the Table 3 using the

Data property and Object property tabs. The result shall look

as shown in for the “Tax ID” property.Fig. 10

Fig. 10. “Tax ID” data property

31

2. Compose the Data Model / 2.2. Properties

Now save the resulting ontology in the Turtle syntax (a file

shall have .ttl extension) and upload it to the EKG Platform

dataset. You can do this through the Fuseki web interface

using the “Add data” button, or by using the “Data model

(TBox) Import” button on the DataVera EKG Explorer

“Preferences” page. Click on the gear icon in the top-right

corner of the screen to access it.

Fig. 11. EKG Explorer Preferences page with data model import/export tools

32

2. Compose the Data Model / 2.2. Properties

When you need to update the ontology structure in the

future, you can export the model, edit it in Protégé, and

import it back to the EKG Platform using these tools.

After the successful import, click the “Reset server cache”

button, then the “Reset application cache” button, and

return to the main user interface. Click on the class selector

in the top left corner of the screen. The class selection tree

shall look as follows:

Fig. 11. EKG Explorer Preferences page with data model

import/export tools

33

3. Create mapping rules and connect
data sources

3.1. Data sources

Now we are ready to create mapping rules to populate our

model. There is a hierarchy of these rules represented as

subclasses of the “Mapping rules elements” class

 Data source. The objects of this class represent the

databases or services supplying data to the EKG Platform

 Class map. Each of these objects represents a

correspondence between a data source structure

element (a database table, in our example) and an

ontology class. Using these objects, we can assert that

the objects from the “customers” table shall be imported

to EKG as the instances of the Customer class

 Predicate map. These objects represent a

correspondence between the database table columns

and the ontology properties. For example, we can say that

the “t_id” column of the “customers” table corresponds

to the taxId ontology property.

 Object map. This kind of objects is used to map the

particular database row identifiers or enumeration

elements to the ontology individuals. For example, we can

say that the “F” letter in the “gender” column of the

“customer” table corresponds to the “Female” gender.

The general schema of the last three mapping rule types is

given in .Fig. 13

34

3. Create mapping rules and connect data sources / 3.1. Data sources

rdf:type Works in

“Alpha” LLC Organization Person

Fig. 13. The general mapping rules schema

As a first step, we have to define a Data source. In our

example we will use the PostgreSQL database named

“sample”. Its structure is shown in .Fig. 14

Fig. 14. Sample database structure

35

3. Create mapping rules and connect data sources / 3.1. Data sources

To create a data source, choose “Data source” class in the

classes tree (it is located in the “Mapping rules elements”

superclass), and click the “+” button. This will create a new

row in the objects list. Double-click on the randomly

generated object URI and change it to the

“DataSource_Sample”. Then fill in the “Connection string”

box, and type “postgresql” in the “Data source type” box.

Assign it the name “Sample”. The screen should look as

shown in . Then click the “Save” button indicated by

the red arrow.

Fig. 15

Fig. 15 Creating data source

36

3. Create mapping rules and connect data sources / 3.1. Data sources

Alternatively, you can simply change URI, fill in something in the mandatory fields, create an object, and then double-click the URI

column to open the object editor dialog shown in .Fig. 16

Fig. 16. Object editing dialog

37

3. Create mapping rules and connect data sources / 3.2. Class and property maps. OpenMetadata integration

3.2. Class and property maps. OpenMetadata integration

Now we need to create Class maps and Predicate maps. This

can be done manually in the user interface, or better using

the Excel import tool, which we will explore later. Also, we

can use OpenMetadata integration feature to initially

populate these maps with the source database description,

and then just fill in the corresponding classes and properties

of the ontology.

Go to the “Preferences” page. Choose an endpoint and click

the “Import schema from OpenMetadata” button. Choose the

Data source, then the database, schema, and data table. The

system will display a list of the columns of the selected table.

Click on the “Load Metadata” button to proceed. Then the list

of created PredicateMaps will be displayed.

Fig. 17. Using OpenMetadata integration tool

38

3. Create mapping rules and connect data sources / 3.2. Class and property maps. OpenMetadata integration

After using the OpenMetadata import tool on the

“customers” table of our data source and navigating to the

“Class map” class, we will see one row in the objects list. It

defines the rule of importing objects from the

public.customers table into the EKG platform storage. To

complete this rule, we need to select a class in the “Mapped

class” column. We have three subclasses of the Agent class,

let us start with the first one – the Person. Start typing this

word and select an item from the drop-down menu in the

field value editor pop-up. But the “customers” table in our

database contains not only the Persons, but the

Organizations too. We have to restrict the set of the records

which will be imported to the Person class by defining the

SQL WHERE clause. Input the following string in the “Select

condition” cell: “kind = 1”, as shown in . Save the

record.

Fig. 18

Fig. 18. Editing the Class map rule

39

3. Create mapping rules and connect data sources / 3.2. Class and property maps. OpenMetadata integration

Now, duplicate this entry and create a mapping for the

Organization class with the URI

ClassMap_sample_organizations and the Select condition

set to “kind = 2”. Real select conditions can be much more

complex. For example, they may include subqueries.

Switch to the Predicate map class. Several rows should

appear, each representing a column in the “customers” table.

Let us edit them in Excel. Click the “Export to Excel” button

on the toolbar. You shall see the Excel file as shown in ,

but with the last three columns empty:

Fig. 19

Fig. 19. Excel file ready for upload

40

3. Create mapping rules and connect data sources / 3.2. Class and property maps. OpenMetadata integration

Now, we will fill some information into this file, and upload it

back to EKG. First, we have to choose a Mapped property for

each column of the table. Here, we shall should enter the

URIs (identifiers) of the ontology properties, which you can

view in Protégé. Please note the two properties that have a

full prefix starting with http://

 http://datavera.kz/ekg/hasOriginCode - this property

belongs to the technical ontology used by EKG Platform.

It contains the identifier of each loaded data object as it

appears in the data source. We shall map the “id” column

to this property. We will also mark these properties as

primary keys by typing “true” in the “Is a primary key

property” column

 http://www.w3.org/2000/01/rdf-schema#label – this

property, defined in the RDFS specification, serves as the

readable label of the object. We have already used

rdfs:label when creating our ontology.

We omit the prefix for other properties since they have our

ontology’s default prefix.

When you open the downloaded file, it will contain only five

rows, which were created during the metadata import from

OpenMetadata. They are all bound to the “sample customers

(ClassMap_sample_customers)” ClassMap, which was also

created automatically. Remember that this ClassMap works

only with Persons. We have created another ClassMap,

ClassMap_sample_organizations, to import our

organizations. We shall make a copy of our PredicateMaps for

the Organization class. Copy all the rows except hasGender.

Replace the word “customers” with the “organization” in

these rows. Voila, you have created four more

PredicateMaps! Please make sure that you have changed

their URIs: each ontology entity must have a unique URI. We

did this with our replace operation, which changed URIs from

PredicateMap_sample_customers_id to the

PredicateMap_sample_organizations_id, etc.

We have a few more details here. The “tax” column has to be

mapped to the VATNumber property for Organizations

instead of taxId. Also, we have to handle the property values

for enumerations: gender and country.

41

3. Create mapping rules and connect data sources / 3.2. Class and property maps. OpenMetadata integration

The gender is indicated in our sample database by the letters

“M” and “F” contained in the “gender” column. When loading

into EKG, we shall convert these letters to the URIs of the

individuals we have created in Protégé: Male and Female. To

do this, we have to define the ObjectMaps. But let us finish

with the PredicateMaps first. Enter the URIs that we will

create on the next step, “ClassMap_Gender” and

“ClassMap_Country”, into the “Use objects map” column for

the hasGender and hasCountry properties. Save the edited

file, click the “Import from Excel” button in the EKG interface,

choose the saved file and check the “replace values of the

existing ones” option, then click the “Import” button. After

successful upload, you shall see the updated set of

PredicateMaps in the interface.

42

3. Create mapping rules and connect data sources / 3.3. Object maps (enumerations)

3.3. Object maps (enumerations)

As a first step, we have to return to the Class map list and

create two new class maps: ClassMap_Gender and

ClassMap_Country. The resulting set of ClassMaps shall look

as shown in .Fig. 20

Fig. 20. Class map list

43

3. Create mapping rules and connect data sources / 3.3. Object maps (enumerations)

Then go to the Object map class. Click “Export to Excel”

button to obtain the empty Excel template for creating

Object maps. Fill the first row with the following values

 URI = ObjectMap_Gender_

 Label = gender

 Belongs to Class map = ClassMap_Gende

 Data source = DataSource_Sampl

 Data source object id =

 Mapped object = Male

Copy this row for the Female gender. Then do the same for

the list of countries. You shall obtain the file looking as

shown in

Load this file into the ObjectMap class and check the result in

EKG Explorer UI.

 Fig. 21.

Fig. 21. Excel file for ObjectMap objects import

44

3. Create mapping rules and connect data sources / 3.4. Complex mapping rules

3.4. Complex mapping rules

A typical task is to combine information from multiple data

source tables into one ontology class. In our example, we

have the products_customers table, which links customers

to the products table containing the list of product types.

Here, we want to save the products into the “Product of

interest” customer property. To achieve this, we need to join

three tables when selecting customers from data source.

We will create a ClassMap object for each table and then join

them together. The resulting Excel file shall look as follows:

Fig. 22. Joining tables using Class maps

In the “Join with” column we insert the URI of the root

ClassMap – “ClassMap_sample_customers”, which maps the

class to the main table (“customers” in our case). In the “Join

condition” column we place the SQL expression from the ON

clause of the join.

45

3. Create mapping rules and connect data sources / 3.4. Complex mapping rules

In the “Join with” column we insert the URI of the root

ClassMap – “ClassMap_sample_customers”, which maps the

class to the main table (“customers” in our case). In the “Join

condition” column we place the SQL expression from the ON

clause of the join.

When compiling SQL query from the rules, EKG always uses

LEFT JOIN. This is necessary to avoid missing records from

the main table which does not have the corresponding

records in the joined tables – for example, customers who do

not have the products of interest. If the sequence of the

joined table matters, as in our case (we have to join with

products_customers, then with the product table), we shall

also set the values for the Processing priority property of

PredicateMaps. Objects with the higher priorities are

processed first, so the tables will be joined in the right order

if the ClassMap_sample_products_customers have

Processing priority = 100, and ClassMap_sample_product

has Processing priority = 90.

After setting up the ClassMaps, we have to map the

properties. These properties shall be bound to the ClassMap

of the table that contains the value we want to extract. Since

we want to obtain the names of the products of interest, we

shall assign our predicate maps to the

ClassMap_sample_product and

ClassMap_sample_product_organizations respectively,

as shown in .

As every customer can have multiple products of interest,

the respective Agent class objects in the EKG will have

multiple values for the “Product of interest” property. We can

think of it as of a property with an array type.

If we want to link the Customers to the appropriate Products

expressed as ontology objects, we need to create the

ClassMap and PredicateMaps to populate the Product class.

Then, we shall create the first joined ClassMap for our

Agents, linking “customers” and “products_customers”

tables. We should map the “products_customers

.product_id” column to the “Product of interest”

ObjectProperty without specifying the value of the “Use

objects map” property. This will signal the system to

generate the link to other objects loaded from the data

source.

Fig. 23

46

3. Create mapping rules and connect data sources / 3.4. Complex mapping rules

Fig. 23. Predicate maps for the product names

The link between the loaded data objects is established due

to the URI generation rules. When loading data, EKG

automatically creates the URIs using the following template:

[data source URI]_[class URI]_[unique key from the data source].

For example, a person with id = 1 in the “customers” table will

have the following URI: DataSource_Sample_Person_1.

Respectively, the product with id = 4 will have URI

DataSource_Sample_Product_4. When resolving the value

for the “Product of interest” property of the

DataSource_Sample_Person_1, the system will generate id

for the referenced product using the same rule, obtaining

DataSource_Sample_Product_4, and will create a valid link

to the product.

47

3. Create mapping rules and connect data sources / 3.4. Complex mapping rules

The mapping rules syntax is quite rich. Let us highlight some

mapping rules features without going into details

 When joining tables, you can create several join rules for

the same joined table at once (this will result in only one

join in the SQL query). This is useful when there is a table

containing several related data pieces that must be saved

in different properties. Imagine a table named “codes”

with the “person_id”, “code_type” and “code_value”

fields. There are two records in this table for each person:

the record with code_type = 1 contains VAT number in

the code_value field, while the record with code_type = 2

contains the internal customer code. In this case you

should create two Class maps, indicating  

code_type = [1 or 2] in the “Select condition” property.

Both Class maps will join the same table “codes” with the

main table. Then create two Predicate maps referring to

each of the Class maps. Both Predicate maps will have

“Data source property (column, key)” = “code_value”, but

they will map it to different data model properties

 Predicate maps can have more than one row marked as

the Primary key property. This happens when there is no

unique ID column in the table, and you need to use

several columns combination as the synthetic key. In this

case, the values of all the key properties will be used to

generate a unique key. For example, if there are the

documents, which we identify by the combination of

document number and the owner ID, their URIs may look

like DataSource_Sample_Document_0123456_12. In

this case it is very important to set the Processing priority

value of the Predicate maps with “Is a primary key

property” = true, to ensure that the key values in the URI

will always have the right order: in our example the

property map for the “Document number” shall have

priority = 100, for the “Document owner” priority = 90.

 The Predicate maps can map a model property to a

Constant value

 The Predicate maps can extract values from data source

columns using regular expressions. This is useful when a

data source column contains several property values

concatenated into one string. For example, document

validity dates may be stored as “2024-01-15 –

2034-01-14”. In this case we have to split these values:

48

3. Create mapping rules and connect data sources / 3.4. Complex mapping rules

the first date shall be stored as the “Issue date” property

value, while the second one is the “Valid to” property

value. To achieve this, create two Predicate maps for this

field, and fill in the “Use regular expression” property with

the values like “^(?:\d\d[\.\-,]\d\d[\.\-,]\d{2,4})” and

“\d\d[\.\-,]\d\d[\.\-,]\d{2,4}\s*\-*\s*(\d\d[\.\-,]\d\d[\.

\-,]\d{2,4})\s*$”. You can specify several regular

expressions in one Predicate map.

 The “Take the value related to the biggest value of field”

property of the Property map can be used when there are

several values in the joined table, and you need to take

only the last of these. For example, there can be a table

containing the customer visit records. Each record has

the “date” and “branch” fields. You need to store the

branch which the customer has visited last as the value

of the “Preferred branch” property. Map this property to

the “branch” field, and indicate the “date” field in the “Take

the value related with the biggest value of field” property

of the PredicateMap

 The http://datavera.kz/ekg/lastChanged data model

property is especially important. It shall be mapped to the

data source column containing the record update time. If

there is no such column, you will not be able to track the

changes and load them into the EKG instantly (this topic

is discussed below). The column may contain data in the

YYYY-MM-DD HH24:MI:SS format, or a linux timestamp,

or a timestamp in the YYYYMMDDHHMISS000000 format.

For joined tables, each table can contain its own

timestamp: in this case, the system will pick the latest

timestamp value from all the joined tables for each

record.

When you have finished composing the Mapping rules, you

shall restart the ekg-worker container. It will import the new

rules and start processing the incoming data from data

source (for the tables that have the ekg:lastChanged

property mapped). You can monitor this process using the

container logs.

Also, you can perform the initial full data import from each

mapped source using the load_data script. Please contact

us for assistance in this case.

49

4. Define normalization rules

The normalization rules are intended for data cleaning. They

can remove unnecessary symbols, split strings, and so on.

They can be implemented as the regular expressions or use

the EKG platform built-in functions.

These rules are stored as instances of "Normalization

function" class. Each object of this class describes a single

normalization procedure. Every procedure can be applied to

several properties. This is represented by individuals of the

"Normalization function application" class.

Fig. 24. Normalization rule’s structure

For example, CamelCase is a built-in normalization

procedure. It is declared in the EKG platform ontology as an

instance of the "Normalization function" class. You can bind

this procedure to pairs of the data model properties. The

recommended practice is to create a property that will store

the initial value acquired from the data source, such as

nameBeforeNorm, and the property for the normalized

value – foaf:name in our example. Create an instance of the

"Normalization function application" class with the following

property values

 "Apply normalization function" = CamelCas

 "Apply to property" = nameBeforeNor

 "Save result as property" = foaf:name

In this case, you should map the data source column to the

nameBeforeNorm property. When saving objects acquired

from data sources, EKG Platform will save the value “as is” in

the nameBeforeNorm property, then apply the CamelCase

function and save the result to the foaf:name property.

50

4. Define normalization rules

The CamelCase function is a built-in and does not have a

body declaration. You can create your own functions and

define them using the following properties

 "Regex pattern" – regular expression searc

 "Replace with" – regular expression replace

The “Replace with” parameter can be omitted. In this case,

each match of the “Regex pattern” will be saved as the

separate property value. For example, the “Split by comma”

function has the “Regex pattern” = “\s*([^,]+)\s*“ and no

“Replace with”. This pattern includes parentheses to indicate

the captured pattern, which captures everything except for

the comma. If there are several commas in the string, each

part of the string between commas will be captured as a

regular expression result. Each result will be stored as the

separate value of the resulting property. This function is

useful for separating multiple phone numbers divided by

commas, etc.

Another example is the RemoveDigits function. It has the

“[\d]” pattern and an empty replacement. This means that it

will replace each digit in the input with an empty value.

Please note that in ontologies, the absence of a property

value is significantly different from the presence of an empty

value.

51

4. Define normalization rules

The normalization functions can be viewed and edited using the EKG Explorer UI:

Fig. 25. Normalization functions in the EKG Explorer UI

After updating the functions or their applications, you shall

reset the server cache using the Preferences page or restart

the EKG Provider to apply the changes.

There is a limitation in the current implementation of the

normalization functions: the currently used regex library

does not support UTF-8 characters. However, the built-in

normalization functions do support UTF-8.

52

4. Define normalization rules

Let us list the built-in normalization functions that you might find useful:

Table 4. Built-in normalization functions

Function URI Function purpose

CamelCase Convert the string to camel case – i.e. capitalize the first letter of each word and make

the following letters lowercase

LCase, UCase Convert the entire string to lowercase or uppercase

ReplaceNonLiteralSymbols Remove all characters except letters, spaces and hyphens (this may be used to normalize names)

ReplaceStrangeQuots Replace all types of quotes with regular straight quotes

RemoveCrLf Remove CR, LF and tabulation

SwitchAlphabet Replace the Latin characters in the Cyrillic string, and vice versa. If the most characters in the string

are Latin, it is considered Latin. In this case, if the string contains Cyrillic characters common to

both Latin and Cyrillic alphabets (such as a, o, etc.), they are converted to their Latin analogues.

When splitting strings, you can place the first value in one

property, and the following values to another. It is useful

when separating phones: the first phone can be considered

as principal and written to the foaf:phone property, the other

phones are considered supplementary and saved in the

extraPhone property. In this case you can use the “Save first

result as property” property of the “Normalization function

application” instance.

53

4. Define normalization rules

Multiple normalization functions can be applied to each pair

of the properties. The application order may be important, so

it can be set by defining the “Processing priority” property

value. Functions with a higher priority will be applied first.

By default, the normalization functions are applied to all the

values of the defined properties, regardless of which classes

instances possess them. In some cases, you might need to

apply the normalization only to the instances of the specified

classes. This can be done by setting the “Mapped class”

(ekg:hasClass) property value for a “Normalization function

application” class object.

You can easily debug normalization functions. Open the class

to which individuals you have defined the functions. Choose

the pair of columns for the properties before and after

normalization. Enter a value to the property before

normalization of some individual and save the record. You

will instantly see that the normalized property value is

written into the normalized property value:

Fig. 25. Normalization functions in the EKG Explorer UI

54

5. Set up validation rules and assess data quality / 5.1. Constraints representation in the ontology

As you can see in Fig. 26, a set of normalization rules applied to the “Mobile

phone (before normalization)” property transforms several comma-

separated values into separate values of the “Phone” property. The extra

symbols are removed, and the normalized phone numbers contain exactly 10

digits starting with the operator code, without the country code. Of course,

the logic of these rules can be changed as needed.

5. Set up validation rules and assess data quality
5.1. Constraints representation in the ontology

Validation rules, or constraints, are stored in the ontology according to the

W3C SHACL specification. This specification describes several ways of

expressing the fact that some part of the knowledge graph must comply

with some certain requirements. EKG Platform implements one of these

methods, the SPARQL Constraints. The restriction is defined by creating two

ontology objects: instances of the shacl:PropertyShape and

shacl:SPARQLConstraint classes.

55

5. Set up validation rules and assess data quality / 5.1. Constraints representation in the ontology

The first object has the following properties

 Target class – specifies the class to which the rule applies

for instance

 SPARQL expression – points to a shacl:SPARQLConstraint

objec

 Has severity – can be set to either shacl:Violation (default

value) or shacl:Warning. The Violation level constraints

 Reject properties – an extension added by DataVera. If the

values of this property are set, only the values of the

specified properties will be marked as invalid if constraint

fails. By default, the rule marks all properties used in the

SPARQL expression as invalid.

The shacl:SPARQLConstraint class objects have the following

properties

 Message – the violation message tex

 Select – ASK or SELECT SPARQL query that checks the

restriction. If the ASK query returns true or SELECT query

returns anything, then the check is passed, and there is

no violatio

 Inverse logic – a Boolean flag. If set to true, the above-

described logic is inverted: the constraint holds if ASK

returns false or the SELECT returns no result. This feature

is an extension specific to DataVera EKG Platform.

56

5. Set up validation rules and assess data quality / 5.1. Constraints representation in the ontology

You can prepare constraints in Protégé and import them to

the Fuseki endpoint, or create them in the Excel file and

import it, or create constraints directly in the user interface.

When creating constraints in the user interface, create a

SPARQL constraint first:

Fig. 27. SPARQL constraint in the EKG Explorer user interface

Fig. 28. Property shape in the EKG Explorer user interface

57

5. Set up validation rules and assess data quality / 5.2. Create constraints

5.2. Create constraints

Creating constraints is a rather complex task. We will present

several examples here, although the variety of possible use

cases is vast.

Let us start with the simple rule which checks that the Tax ID

consists of 12 digits. The SPARQL query is:

ASK {  

 $this <http://yourdomain.com/prefix/

taxId> ?taxID 

 FILTER(REGEX(?taxID, "\\d{12}")) 

}

The SPARQL query syntax explanation is beyond the scope of

this guide. There are several sources available on the

Internet. However, let us note that the $this expression is a

variable representing the object being checked – a Person

class instance. http://yourdomain.com/prefix/taxID is the full

URI (identifier) of the taxId property – we must write it

including our ontology’s default prefix here. ?taxID is the

variable which will store the property value. The first line

reads as “take the taxId property of the checked object and

place it into the ?taxID variable”.

The next line contains FILTER clause. This filter checks that

the ?taxID variable contains 12 digits using a regular

expression function. This means that if the checked object

has the value of taxID property that contains 12 digits, the

ASK query will return true, and our constraint holds.

But there is a problem. If our Person does not have a taxId

value at all, the query will return false, and constraint fails.

We don’t want to mark every Person without taxId as invalid

(for example, we might not know the taxId of the prospective

customers). To avoid this, we shall use the above-mentioned

“Inverse logic” flag. When we set it to true, EKG will expect

58

5. Set up validation rules and assess data quality / 5.2. Create constraints

that the ASK query returns false if everything is ok. Let us

add negation to the filter:

ASK {  

 $this <http://yourdomain.com/prefix/

taxId> ?taxID 

 FILTER(!REGEX(?taxID, "\\d{12}")) 

}

Now everything is fine. If our object does not have a taxId

value or the taxId value consists of 12 digits, the query will

return false. Because the “Inverse logic” flag is set, the

constraint holds. We will use the “Inverse logic” flag in all the

rules we will discuss below.

Consider a more complex example. Let us assume that the

first 6 digits of taxId represent the year, month, and day of

birth (this holds for Kazakhstan). Now the SPARQL query will

use two properties of the Person, and use several built-in

SPARQL function to process their values:

ASK { 

 $this <http://yourdomain.com/prefix/

taxId> ?taxID. 

 $this <http://yourdomain.com/prefix/

birthDate> ?birth 

 FILTER(CONCAT(SUBSTR(STR(?birth), 3,

2), SUBSTR(STR(?birth), 6, 2),

SUBSTR(STR(?birth), 9, 2)) != SUBSTR(?

taxID, 1, 6)) 

}

The rule is quite clear: it extracts the last two digits of year,

the month, and the day from the date in YYYY-MM-DD

format, concatenates these 6 digits, and compares the result

with the first 6 digits of taxId. Since we are using inverse

logic for the same reason as in the previous example, we

assert that they don’t match.

This example demonstrates the usability of the “Reject

properties” property of the shape. By default, this rule will

59

5. Set up validation rules and assess data quality / 5.2. Create constraints

mark both taxId and birthDate values as invalid. However, if

we trust the taxId property, it indicates that only birthDate

value is invalid. We can set “Reject properties” = birthDate in

our shape, ensuring that only this property value will be

marked as invalid if the constraint fails.

Along with the SPARQL functions defined in the W3C

specifications (with some limitations, see you

can use the DataVera EKG Platform-specific built-in function.

An example:

User Guide)

ASK {  

 $this <http://yourdomain.com/prefix/

taxId> ?taxid . 

 $this <http://yourdomain.com/prefix/

hasResidencyStatus> ?status 

 FILTER(STR(?status) == "NonResident"

&& DV_REPEATING_DIGITS_LEN(?taxid) > 11) 

}

This rule checks that the taxId of non-residents contains no

more than 11 repeating digits (it means that the taxId cannot

be set to a fake value like 000000000000). The

DV_REPEATING_DIGITS_LEN built-in function is used to

obtain the length of the maximum repeating sequence within

taxId value.

Another example checks that a document has a valid issue

date between 1920 and today:

SELECT * WHERE {  

 $this <http://yourdomain.com/prefix/

issueDate> ?date 

 FILTER(DV_INVALID_DATE(?date) ==

'true' || ?date < '1920-12-31' || ?date

> NOW()) 

}

Note that the comparison operations – greater than and less

than – are inverted in the filter conditions. We have to invert

the entire Filter expression to use the “Inverse logic” flag.

https://datavera.org/files/EKG-Provider-User-Guide-EN.pdf

60

5. Set up validation rules and assess data quality / 5.2. Create constraints

NOW() is the SPARQL built-in function that returns the

current date and time, while DV_INVALID_DATE is a

DataVera-specific built-in that checks whether the given

date has a valid format. The main built-in functions are listed

in Table 5.

Table 5. DataVera-specific SPARQL built-in functions

Function Arguments Description

DV_REPEATING_SYMBOLS_LEN ?str – a string value to check Return the length of the maximal sequence

of repeating symbols

DV_REPEATING_DIGITS_LEN ?str – a string value to check Return the length of the maximal sequence

of repeating digits

DV_ALPHABET_MIX ?str – a string value to check Returns true, if a string contains the mix of

latin and non-latin characters

DV_INVALID_DATE ?date – a date to check Returns true, if date has a valid format

YYYY-MM-DD HH24:MI:SS

DV_ALLOWED_CHARS ?str – a string to check 

?chars – a set of allowed characters

Returns true, if a string contains only the

allowed characters. This function works

with the multi-byte characters.

61

5. Set up validation rules and assess data quality / 5.2. Create constraints

The rules can be used to prevent duplicates. For example,

if we want to ensure that two customers do not share the

same document number, the rule shall look as follows:

SELECT * WHERE {  

 $this <http://yourdomain.com/prefix/documentNumber> ?number. 

 $this <http://yourdomain.com/prefix/taxId> ?taxId. 

 $this <http://datavera.kz/ekg/hasOrigin> ?origin. 

 ?dupl <http://yourdomain.com/prefix/documentNumber> ?number. 

 ?dupl rdf:type <http://yourdomain.com/prefix/DataSourceIdentifyingDocument>. 

 ?dupl <http://datavera.kz/ekg/hasOrigin> ?origin. 

 ?dupl <http://yourdomain.com/prefix/taxId> ?taxId 

 FILTER($this != ?dupl) 

 HINT(?number, "mandatory") 

}

Note that in this rule the $this and ?dupl objects possess the

same value of the taxId and hasOrigin properties, indicated

by the same variables ?taxId and ?origin. This is one of the

ways to assert the property values equality. The equality of

the taxId property ensures that the ?dupl document is

62

5. Set up validation rules and assess data quality / 5.2. Create constraints

possessed by the same customer as $this. Another way to

assert this is to write the following lines: ?dupl <http://

yourdomain.com/prefix/hasOwner> ?owner . $this http://

yourdomain.com/prefix/hasOwner> ?owner (but it would not

work if our task is to check the document numbers acquired

from the different data sources, as the document from every

data source would have its own owner).

As the ?dupl variable in this query contains the URI of

another object, we have to identify its class – this is done

with the ?dupl rdf:type <http://yourdomain.com/prefix/

DataSourceIdentifyingDocument> expression.

The last line of expression uses the DataVera-specific

extension. The HINT function tells engine that the ?number is

the key variable. This optimizes the rule execution: the

system will first look for the documents with the same

number as $this has. This will give a small (or empty) set of

objects, and limit the further calculations. Without the hint,

the system could decide to search the documents with the

same origin, which would give an order of magnitude larger

data set.

63

5. Set up validation rules and assess data quality / 5.2. Create constraints

The next rule checks that if the customer has a local phone

number starting with 77 (the phone code of Kazakhstan), this

customer’s document must be either an IdentityCard,

ResidentCard or BirthCertificate (these are the URIs of the

DocumentKind class instances).

SELECT * WHERE {  

 $this <http://xmlns.com/foaf/0.1/phone> ?phone . 

 ?document rdf:type <http://yourdomain.com/prefix/DataSourceIdentifyingDocument> . 

 ?document <http://yourdomain.com/prefix/hasOwner> $this 

 { ?document <http://yourdomain.com/prefix/hasDocumentKind> <http://yourdomain.com/prefix/

Passport> }

 UNION { ?document <http://eubank.kz/ns/customer/hasDocumentKind> <http://yourdomain.com/

prefix/IdentityCard> }

 UNION { ?document <http://eubank.kz/ns/customer/hasDocumentKind> <http://yourdomain.com/

prefix/ResidentCard> }

 UNION { ?document <http://eubank.kz/ns/customer/hasDocumentKind> <http://yourdomain.com/

prefix/BirthCertificate> }

 FILTER(SUBSTR(?phone, 1, 2) != "77") 

}

64

5. Set up validation rules and assess data quality / 5.2. Create constraints

We have used a UNION clause to express the fact that the

document kind must be equal to one of the URIs of

enumerated members. The UNION clause can contain

multiple patterns within.

Please note also that in this rule we are dealing with the

properties of two objects of different classes. $this is a

Person instance, while ?document represents a document.

When we have discussed the data model creation above, we

have noted that it is possible to impose cardinality

constraints on the property values. For example, we can

state that taxId property is mandatory, and every object

must have a value of it. But in some cases we can accept

creating data objects not having a value of some property,

but then highlight them with the warning-level violations.

This can be done by a rule like this:

ASK {  

 OPTIONAL { $this <http://

yourdomain.com/prefix/taxId> ?taxId } 

 FILTER(?taxId == "") 

}

Please note that not all SPARQL features are supported by

the platform at the moment. Refer to the

 to learn details.

After creating or editing constraints you have to restart the

EKG Provider or clean its cache. If you need to re-apply the

amended rules to the data objects of certain class, push the

“sandwich” menu button over the list and choose “Apply

constraints” item. This will initiate an asynchronous task. You

can watch its progress using the progress indicator which

will be displayed instead of the “sandwich” menu button.

EKG Platform User

Guide

https://datavera.org/files/EKG-Provider-User-Guide-EN.pdf
https://datavera.org/files/EKG-Provider-User-Guide-EN.pdf

65

5. Set up validation rules and assess data quality / 5.3. Visualize violations and monitor data quality

Fig. 29. Applying new constraints

Please note that it is necessary to map the

shacl:ValidationResult class to the EKG storage

(PostgresPostgreSQL table) to use this operation. The

shacl:focusnode property must be mapped to a table column

5.3. Visualize violations and monitor data quality

When some constraint is violated, the shacl:ValidationResult

object is created in the database. Each violation refers to a

constraint violated and to an object which has caused it.

The constraints are applied automatically when a data object

is updated. If there were previously the recorded violations of

the constraints which now hold, the old violations are

deleted. If the new violated constraints are found, the new

violations are created. The shacl:ValidationResult may be

observed as the data objects in the EKG Explorer UI.

However, it is much more useful to see them in the list of the

objects being checked. There are several ways of displaying

violations. First, they are shown in the data objects grid: the

cells containing invalid property values are highlighted red

(for Violations) or yellow (for Warnings).

66

5. Set up validation rules and assess data quality / 5.3. Visualize violations and monitor data quality

Fig. 30. Validation results display in the EKG Explorer UI

When you move the mouse over highlighted cell, the tooltip is displayed containing the constraint description.

Hovering mouse over the URI cell will display all the violations, including those associated with invisible columns.

In the data object edit dialogue, the exclamation signs are displayed near the fields containing property values

which violate constraints. Move the mouse over a sign to see the violation description.

Fig. 31. Violations display in the data object editor box

67

5. Set up validation rules and assess data quality / 5.3. Visualize violations and monitor data quality

The Data quality monitor tool is displayed over the data

objects list. It shows the overall percentage of data objects

having any associated validation error. Hovering mouse over

this tool shows some details:

Fig. 32. Data quality monitor

Here you can see the total number of data records, the

number of objects having at least one violation, and the

violated constraints list with the number of violations of each  

of them. Clicking on the constraint name you can filter list to

display only the data objects which have violated this

constraint.

You can navigate to the Data Quality Dashboard to see more

detailed metrics. This dashboard contains several widgets

shown in the .Figures 33 – 35

68

5. Set up validation rules and assess data quality / 5.3. Visualize violations and monitor data quality

The diagram in the top left part of the dashboard shows the

percentage and amount of data objects having blocking and

informative constraint violations. You can choose a particular

data source to see this statistic only for data source objects

originated from this system. The diagram at the right  

indicates the consolidation results: how many data source

objects were bound with the other system’s data source

objects, how many of them have produced reference objects

or caused a consolidation error.

The second row of the diagram shows the reference object

distribution by the number of data source objects used to

produce them.

Fig. 33. Data Quality Dashboard, upper part

69

5. Set up validation rules and assess data quality / 5.3. Visualize violations and monitor data quality

Fig. 34. Data Quality Dashboard, middle part

In the middle part of the dashboard, the widget shows data quality details for the properties applicable to the

chosen class. The left part shows how many data source objects has a non-empty value of every property.

The right part shows which share of the property values has successfully passed logical control, or has the

blocking and informative violations.

70

5. Set up validation rules and assess data quality / 5.3. Visualize violations and monitor data quality

Fig. 35. Data Quality Dashboard, lower part

The lower part of the dashboard shows the properties statistics for the reference objects. The left part

shows how many reference objects have non-empty values of each property. The right part displays the

share of the data source systems from which the values of each property was taken.

71

5. Set up validation rules and assess data quality / 5.4. Use control ratios in constraints

5.4. Use control ratios in constraints

The above constraint examples were focused on the logical control

of the certain property values. The constraints may also be used to

calculate the control ratios between the numeric property values.

The arithmetic operations right in the FILTER clause are not

supported by the platform at the moment. Instead, you shall

create a SPARQL function which performs some calculation,

and then use its result to compare with desired values.

Consider an example. Let us add a “Deposit” class into our

model, having the “Amount”, “Term”, “Rate” and “Income due”

properties. We want to check by constraint that Amount *

Term * Rate / (365 * 100) is equal to Income due.

First, we have to create three SPARQL function parameters

(see “Parameter” class in the “SHACL” branch of the model)

with the URIs: daysParam, rateParam and amountParam.

rateParam and amountParam must have shacl:datatype  

property value equal to xsd:double, daysParam

shacl:datatype equal to xsd:integer. The special shacl:path

property must contain a synthetic URI having  

http://datavera.kz/ekg/ prefix. The unique part of this URI

represents the name of function parameter which will be

used in its body. Assign our parameters shacl:path values

equal to http://datavera.kz/ekg/days, http://datavera.kz/ekg/

rate and http://datavera.kz/ekg/amount.

Second, we must create a SHACL function instance. Open this

class in the tree and create a function with URI and name equal to

depositIncome. Select all three parameters as the shacl:parameter

property values, and assign “return type” equal to xsd:double.

Finally, set the “select” property equal to the SPARQL query:

SELECT ($amount*$days*$rate/(365*100)

AS ?result) WHERE {}

This query has a special format which must be followed. Note

the three variables used in the formula: $amount, $days and

$rate. Their names match the defined function parameters.

72

5. Set up validation rules and assess data quality / 5.4. Use control ratios in constraints

Fig. 36. DepositIncome SPARQL function in the EKG user interface

Now let us create a constraint. It shall be created in the way described above. The constraint body shall be:

SELECT * WHERE { 	?dep rdf:type <http://yourdomain.com/prefix/Deposit> . 

 ?dep <http://yourdomain.com/prefix/termDays> ?term . 

 ?dep <http://yourdomain.com/prefix/amount> ?amount . 

 ?dep <http://yourdomain.com/prefix/rate> ?rate . 

 ?dep <http://yourdomain.com/prefix/incomeDue> ?income 

 BIND (depositIncome(?amount, ?term, ?rate) as ?calculated_income) 

 FILTER(?income != ROUND(?calculated_income, 2)) 

}

73

5. Set up validation rules and assess data quality / 5.4. Use control ratios in constraints

The query extracts three parameters required to calculate

the deposit income: the deposit amount, term and rate. Then

the depositIncome SPARQL function is called, using these

variables as parameters. The function result is saved to the  

?calculated_income variable. Finally, this variable is

compared with the incomeDue parameter stored in the

Deposit class individual’s properties. Let us see the violation

in the EKG Explorer interface – please note that all the

properties involved in calculation are highlighted in red, as

any of these values may be incorrect:

Fig. 37. Constraint violation in the EKG Explorer interface

74

6. Create consolidation rules
6.1. Duplicates search and markup

The next data processing stage is consolidation. It consists

of two steps, the first of which is the duplicates search. As

each business object (i.e., a customer, document, address,

etc.) can be represented by several records in the various

data sources, we first need to bind together these records,

which we call duplicates. At the second step, one reference

object will be generated from every group of the data source

records.

To mark up duplicates, the SHACL rules are used. SHACL

rules are similar to the above-described constraints, but with

the significant difference: they produce new facts recorded

in the database. SPARQL CONSTRUCT query is used in the

rule body. The queries of this kind consist of two parts: the

WHERE clause defines a pattern to search for data, while the

CONSTRUCT part specifies the new inferred facts which will

be inserted into database. When using rules for duplicates

search, the CONSTRUCT part infers relation between the

duplicates, while the WHERE part specifies duplicates search

criteria. The query for our sample looks as follows:

CONSTRUCT { 

 $this owl:sameAs ?pair. 

 ?pair owl:sameAs $this

} WHERE { 

 $this rdf:type <http://

yourdomain.com/prefix/DataSourcePerson>. 

 $this <http://yourdomain.com/prefix/

taxId> ?taxID. 

 ?pair rdf:type <http://

yourdomain.com/prefix/DataSourcePerson>. 

 ?pair <http://yourdomain.com/prefix/

taxId> ?taxID 

 FILTER ($this != ?pair) 

}

75

6. Create consolidation rules / 6.1. Duplicates search and markup

The WHERE part produces the pairs of $this and ?pair objects

which represent persons with the same taxId. The

CONSTRUCT part infers owl:sameAs relation between these

objects. For other object classes, the CONSTRUCT part

usually stays the same, while the WHERE part can contain

various conditions similar to the those discussed above.

Please note that the owl:sameAs property (its full URI is

http://www.w3.org/2002/07/owl#sameAs) must be mapped

to the EKG storage column having array type. The properties

used as the duplicates search criteria (taxId in our case) also

must be mapped to the separate columns. In our example it

means that the “entity” table must have the “sameas”

column having _varchar type (we have done this mapping in

the first part of this Guide), and the “taxid” varchar column.

You shall run the following command at the system

configuration stage:

ekg-provider map PG_Entity taxid taxId 0

It’s worth creating btree index on taxid column.

We have to create the SPARQL Construct rule individual

which has no other properties than the above query in the

“construct” field. Then switch to the “Node shape” class and

create an individual which links the rule to the “Data source

person” class. Reload server cache, go to the “Data source

person” class page, and click on the “Apply duplicates

search” menu item. After the rule execution you will see the

inferred facts in the object properties, as shown in Fig. 38:

Fig. 38. Inferred facts in the object properties

76

6. Create consolidation rules / 6.1. Duplicates search and markup / 6.2. Consolidation rules

You can use this kind of rules for any data augmentation

tasks. One of the examples is the new relations inference

according to the graph chain relation search patterns, such

as grouping affiliated persons or companies. The objects can

be assigned with the classification properties basing on their

relations or literal property values.

6.2. Consolidation rules

Now we need to create the Consolidation rule which will

define the reference objects generation logic. Open the

“Consolidation rules” class and create an individual with the

following property values

 Mapped class = Data source person. It is the class of the

records loaded from data source

 Reference class = Reference perso

 Has mandatory property = taxId. You can select more

than one property here. The reference objects will not be

created without having the values of these properties

 Create reference objects from single data objects = Yes.

In some special cases this switch may be turned off,

to prevent creating reference objects from the records

existing in only one data source.

The remaining properties choose the logic of selecting

property values for the reference object

 Prefer newer records = No. If set to Yes, the system will

take the most recent record from the group of

consolidated objects and copy its properties to the

reference object. Then it will take the second-newest

object and use it to fill the properties which values are not

yet determined, etc. The special “Last change date”

(http://datavera.kz/ekg/lastChanged) property is used to

determine the data source object update time. You shall

77

6. Create consolidation rules / 6.1. Duplicates search and markup / 6.2. Consolidation rules

map it to the timestamp or date column of the data

source object to use this logic.

 Prefer newer values = Yes. If this option is selected, the

system will determine the latest source for each property

value. The property value update time is determined by

the EKG Platform using its history records. It means that

this option has no effect at the initial data load and

consolidation, but can be used in the continuous data

update process

 Use origin priority rules = No. If set to Yes, the system will

use the “Consolidation priority map” class individuals to

determine the preferred data source for each property

value. These individuals shall have the following

properties:

– Mapped class = the data source objects class, “Data

source person” in our case

– Mapped property = the property for which the priority is

defined, for example “Birth place”

– Data source = the data source, for example

DataSource_Sample

– Processing priority = a number defining the priority of

this data source for the defined class and property.

The 0 value indicates the highest priority

– Mandatory = Yes, if this property value is mandatory at

consolidation.

If neither of these options is set, the system will rely on the

“Data quality” property of the data source to determine the

preferred data source for each record. In the rare case when

the reference object was previously created and has some

property value, but then all the data source objects are

cleared from this property value so the new consolidation is

impossible, the existing reference property value will be kept

at consolidation.

The property values violating the “Violation” level constraints

are ignored at consolidation. The system acts as if these

property values are not set.

The EKG Provider restart is required after consolidation rules

editing to apply changes.

78

7. Build the reference data set and check
data provenance

We have learned the following types of the rules used by the

platform

 Data source mapping rules allow loading data from

external source

 Normalization rules automatically correct incoming dat

 Validation rules are marking incorrect property value

 Duplicates search rules are forming the groups of data

records corresponding to the same business objec

 Consolidation rules define the logic of the reference

objects creation.

All these rules are applied by default when a data object is

created or updated in the platform. However, in the bulk data

load mode the rules of the last three types are skipped to

speed up data loading. This affects both the initial data

loading using the scripts, which we discuss below, and the

data import from Excel. After populating the platform with

data using these ways, you have to apply rules manually

using the “Apply constraints”, “Apply duplicates search” and

“Refresh reference objects” items of the data class menu.

These operations are asynchronous and may take a long time

on the large data sets.

When importing data from Excel file, you can check “apply

rules” checkbox. This will cause the platform to apply all

kinds of rules instantly, but will significantly slow down the

loading process.

79

7. Build the reference data set and check data provenance

After all the rules are constructed, you have to run the initial

data loading from data sources. This process has to be run

separately for each class and data source. There is a script in

the ekg-worker container that can be used to perform this

task. Its command line syntax is:

php load_data.php [data source] [class

URI or ClassMap individual URI]

[property URI or "all"] ["test" if you

want to test the rule]

The last two parameters may be omitted.

Let us run this command for the DataSource_Sample source

and DataSourcePerson class:

kubectl exec [ekg-worker pod id] php

load_data.php DataSource_Sample

DataSourcePerson all test

You can see in the output the resulting SQL query to the data

source. If this query produces an error, it will be displayed in

the log. In our case the query was successful. Then the "test"

parameters cause our script to extract one record from the

data source and display its properties processed with the

mapping rules, as shown in the end of the output. Here you

can see if the mapping rules are set up correctly. Pay

attention to the list of properties, check out their values. In

our case we have to ensure that the ObjectMaps are applied

correctly to obtain the right values of the hasGender and

hasCountry properties, as shown in .

When everything is fine, you can run the data population

commands. If we have two data sources having

DataSource_Sample and DataSource_Example URIs, we

have to run the following commands to populate the

DataSourcePerson class:

Fig. 34

80

7. Build the reference data set and check data provenance

Fig. 39. Testing data source

connection

When everything is fine, you can run the data population

commands. If we have two data sources having

DataSource_Sample and DataSource_Example URIs, we

have to run the following commands to populate the

DataSourcePerson class.

You can run both commands simultaneously using nohup.

kubectl exec [ekg-worker pod id] php

load_data.php DataSource_Sample DataSourcePerson

kubectl exec [ekg-worker pod id] php

load_data.php DataSource_Example DataSourcePerson

81

7. Build the reference data set and check data provenance

The data loading takes a long time, it can be several hours or

days for large tables having millions of records. The scripts

output logs which you can use to monitor the data loading

process. The data loading script output looks as follows –

please note the processing time and created objects

quantity displayed in the end:

The data loading takes a long time, it can be several hours or

days for large tables having millions of records. The scripts

output logs which you can use to monitor the data loading

process. The data loading script output looks as follows –

please note the processing time and created objects

quantity displayed in the end:

Fig. 40. Data loading log

The load_data.php script applies data validation and

consolidation rules after writing each data object. It is

relatively slow, but does not require further processing. As an

alternative, you can use load_data_bulk.php script, having

the same [data source] [class URI or ClassMap individual URI]

command line parameters. It always rewrites the whole

objects and does not have test mode. This script uses bulk

load functionality to speed up data loading. But in the bulk

load mode the rules are not applied instantly, except for

normalization rules. After the data is loaded, you can use

82

7. Build the reference data set and check data provenance

“Apply constraints”, “Apply duplicates search” and “Refresh

reference objects” items of the data class menu to

consequentially apply the validation, duplicates search and

consolidation rules to the loaded data. These rules are

applicable to the whole classes. There are also the command

line tools which gives more control on this process. In

general, bulk loading data and further running the above-

listed asynchronous processing procedures is faster than the

data loading with instant rules execution.

When the consolidation is done, you can observe the

reference data set in the appropriate class, the “Reference

person” in our case. Click on any of the reference objects to

open the properties dialogue, and switch to the

“Provenance” tab.

Fig. 41. Reference object provenance

83

7. Build the reference data set and check data provenance

Looking at the data source object, you can navigate to the

“Reference” tab. It shows the linked duplicates and a

reference object link, if one was created. If there was a

consolidation error, you will see the error information instead:

Fig. 42. Consolidation error

84

7. Build the reference data set and check data provenance

The error shown in indicates that there is no value for

birthDate, a mandatory property. The other reasons may

include the missing key property values, duplicates set

inconsistency (if the objects from a group of duplicates refer

to the different reference objects – this may be caused by

the key property values change), etc. The consolidation

errors may be also reviewed as the “Consolidation error”

class individuals. The good practice is that the data

management personnel review this class daily to find out and

correct the new errors. The data source objects can be

corrected in the EKG as well as in the data sources – in both

cases, the new consolidation attempt will occur. The old

consolidation error will be deleted, and the reference object

(or a new consolidation error) created.

If the reference object exists, but then the data source

objects are amended in the way that prevents new

Fig. 42 successful consolidation, the existing reference object will

be marked with “Archive” = true flag. In this case, on the

“Reference” tab you will see both the reference object link

and the consolidation error information.

The reference objects merging is a rare task which requires

manual actions. In this case, you shall delete one of the

reference objects, and clear the links pointing to it from the

data source objects. Then click “Consolidate” button on the

“Reference” tab of one of the data source objects. The rules

will be applied to bind together the duplicate objects having

the same key property values, and an existing reference

object (the one which was not deleted) will be updated

accordingly. The data source objects will have a link to this

reference object.

85

8. Set up and monitor continuous data update

When the initial reference data set is created, you have to set

up its continuous update. This work is done by the

load_data.php script which runs as a default process of the

ekg-worker container. At start, this script reads all the

configured mapping rules and starts a separate process for

acquiring data objects of each class from each source, so

the total number of processes is approximately equal to

[number of classes] x [number of data sources]. The parent

process observes the children and restarts them if needed.

This process does not require manual management;

however, you can see ekg-worker pod logs to check out that

the data update process is going on normally.

The data loading process requires that a timestamp or

datetime column exist in every monitored table (or a table

joined with it, such as an actions log or history table),

containing the last update date for each record. These

columns may be populated by the data source system itself,

by a mechanism like CDC, or using a trigger that set this

column equal to NOW() on every create or update event. The

ekg-worker remembers the timestamp of the last processed

record for every ClassMap – you can see this value in the

properties of any ClassMap individual. Every N second ekg-

worker performs a SQL query to obtain the rows which

timestamp is more than the last processed record update

time. If there are several joined tables, it is possible to have a

separate timestamp in each of them: in this case, the

maximum timestamp value will be used. The ekg-worker

process forms a data object to be written to EKG, and

compares its checksum with the already existing object (if it

exists). If a checksum does not match, it writes a data object

to EKG, which causes all the rules to be applied. As a result,

the reference object related with the updated data object is

created or updated, or a consolidation error is be recorded.

In case of the massive data changes in the data source, the

changes will be processed in the temporal order. An update

queue may emerge: the objects which were updated later

shall wait while the earlier modified objects are processed.

86

8. Set up and monitor continuous data update

There is a special script to monitor the queue status:

kubectl exec [ekg-worker pod id] php sync_status.php

Fig. 43. Data source synchronization monitoring script

The script outputs the list of the data object classes, and

data sources configured for each class. It displays the

approximate number of records waiting to be processed

(“2” at the), the last successful object update time,

the data source query execution time (“0”) and the ClassMap

individual URI. If you see a big objects queue, you have to

check the log for the errors.

If you have several related classes, for example the Persons

and their Documents, you shall keep in mind that creation of

the reference Document requires that a corresponding

reference Person already exists. So, when the Person and

Fig. 40

the Document in the source system are updated

simultaneously, they can be pushed to EKG in the wrong

order. The ekg-worker process handles this situation, but by

default it allows only 2 minutes gap between creation of the

reference Person and Document. If in your environment the

data is updating intensively, and a processing queue of the

Person objects may grow, leading to the higher gap, you shall

tune the synchronization script with the help of DataVera

support team.

When deploying the DataVera EKG platform cluster, it is

recommended to set up logs collection from all pods to ELK.

87

8. Set up and monitor continuous data update

You can also set up EKG Provider metrics collection to

Prometheus. Metrics visualization dashboards can be set up

in Grafana. The metrics reflect API requests per second, total

number of requests, average requests execution time and

errors counter. As all the EKG Platform components

(including EKG Explorer and ekg-worker data adapter) are

working with EKG Provider by querying its API, this reflects

the overall platform load.

Fig. 44. An example of EKG Provider metrics visualization using Grafana

88

9. Consume reference data

There are several ways of consuming reference data from EKG. You can query them using REST API which is described in details in

the . For example, you can get all the reference persons who are residents of Kazakhstan:EKG Platform User Guide

Fig. 45. Using EKG Platform REST API

https://datavera.org/files/EKG-Provider-User-Guide-EN.pdf

89

9. Consume reference data

You can also obtain any metadata (provenance, values

history, the rules of all sorts, data quality violations,

consolidation errors, etc.) and even the data model using this

API. A good idea may be to export some data or metadata to

the BI tools. You can also populate the platform with data

directly using the API. Subqueries and aggregation functions

are available when using data extraction methods.

But for the near real-time data synchronization between EKG

and data sources you shall use the subscription mechanism.

A data consuming component (an adapter intended for

reference data propagation from EKG to the business

applications) shall subscribe using the API to obtain a

continuous flow of updated data objects through the Kafka

topic. This adapter can transform data to the structure

appropriate for the business application using the same

mapping rules (ClassMap, PredicateMap and ObjectMap), or a

separate set of rules which may be created for the outgoing

data transformation. You can define the new types of the

data receivers and represent them as the DataSource class

instances. This gives you the total control over the data

integration from one point – the DataVera Platform.

We have a template data adapter script which writes the data

objects obtained from Kafka topic to the arbitrary relational

databases using the rules configured in the model. This

adapter is available by request.

90

10. Performance tuning tips

EKG Platform performance highly depends on the

PostgreSQL cluster performance. The tips below will help you

to tune the storages configuration, and then assess the

overall platform configuration to maximize performance

 Carefully design the number of storages (PostgreSQL

tables mapped to the data model classes). We

recommend to group the classes having similar

properties into the one storage. However, the classes with

the very big number of records should not be placed into

the same storage with the relatively small classes. You

can place the objects from data sources into the same

storage with the reference objects. By the other hand,

creating too much storages can make slower some

operations: when searching an object by URI, the system

not always can determine its storage, and in some cases,

it will scan all of them

 You can use several PostgreSQL clusters with one EKG

Platform instance. Sometimes it is useful to use a

PostgreSQL cluster to store the reference data and a

standalone PostgreSQL for storing logs, namely the

instances of ekg:AuditLog, ekg:TechnicalError,

prov:Derivation classes. The ekg:MappingRules class

probably shall be mapped to this storage too. Please not

that the shacl:ValidationResult class must reside in the

main PostgreSQL cluster, as the platform joins its table

with the data source objects tables in some queries.

 Manage the properties to columns mapping. Placing the

property values into a separate column worth when this

property has the relatively high variety of values, and is

often used in the SELECT queries. In this case you shall

use the btree index (or gin, for arrays) on this column.

The owl:sameAs and all the key properties used at

consolidation (such as taxId) shall be placed to the

separate column in almost all cases

 Place shacl:ValidationResult and prov:Derivation into the

separate tables. Map shacl:focusNode,

shacl:sourceShape, ekg:focusClass and prov:hasEntity

to their columns.

10. Performance tuning tips

 When writing code using EKG Platform API, use the right

request flags. If you don’t need the referenced object

names in the response, use "NoLabels": true – this will

dramatically reduce execution time. Use “URIonly”: true

flag when you need to check that object exists. Set

"CheckStorages": false in the select and update queries

when you are sure that the requested objects storage will

never change, and the system shall not check the other

storages if the requested or changed objects exist. Use

"NoPropagate": true, "NoRefCheck": true when possible in

the update requests. Use "NoHistory": true if you don’t

need to keep the history for this class objects.

2024

